
File: DISTL2 317501 . By:CV . Date:28:04:98 . Time:13:21 LOP8M. V8.B. Page 01:01
Codes: 3788 Signs: 2008 . Length: 50 pic 3 pts, 212 mm

Journal of Approximation Theory � AT3175

Journal of Approximation Theory 93, 501�515 (1998)

Average Case L� -Approximation in the
Presence of Gaussian Noise

Leszek Plaskota*

Institute of Applied Mathematics and Mechanics, University of Warsaw,
ul. Banacha 2, 02-097, Warsaw, Poland

E-mail: leszekp�mimuw.edu.pl

Communicated by Allan Pinkus

Received January 6, 1997; accepted in revised form May 1, 1997

We consider the average case L�-approximation of functions from Cr([0, 1])
with respect to the r-fold Wiener measure. An approximation is based on n function
evaluations in the presence of Gaussian noise with variance _2>0. We show that
the n th minimal average error is of order n&(2r+1)�(4r+4) ln1�2 n, and that it can be
attained either by the piecewise polynomial approximation using repetitive observa-
tions, or by the smoothing spline approximation using non-repetitive observations.
This completes the already known results for Lq-approximation with q<� and
_�0, and for L�-approximation with _=0. � 1998 Academic Press

1. INTRODUCTION AND MAIN RESULT

Optimal approximation of a function based on exact or noisy observations
is one of the leading problems in approximation theory, statistics, and infor-
mation-based complexity. Many different settings have been proposed to solve
this problem. The settings are basically determined by whether we have
deterministic or stochastic assumptions on the function and noise.

In this paper, we consider the average case setting, where both the function
and the noise are assumed to be random. The problem is to approximate
a real function f which belongs to the space

Fr=[ f # C r([0, 1]): f ( j)(0)=0, 0� j�r]

and is a realization of the stochastic process corresponding to the r-fold
Wiener measure wr on F r, r�0. That is, the mean element of wr is zero and
the covariance kernel

* This research was partially supported by the State Committee for Scientific Research of
Poland.

Article No. AT983175

501
0021-9045�98 �25.00

Copyright � 1998 by Academic Press
All rights of reproduction in any form reserved.



File: DISTL2 317502 . By:CV . Date:28:04:98 . Time:13:21 LOP8M. V8.B. Page 01:01
Codes: 2644 Signs: 1519 . Length: 45 pic 0 pts, 190 mm

Rr(s, t)=|
F r

f (s) f (t) wr(df )

=|
1

0

(s&u) r
+

r !
(t&u) r

+

r !
du, 0�s, t�1.

An approximation to f is based only on some noisy information y about f.
More specifically, the approximation is given as a function .( y): [0, 1] � R,
where y is of the form

y=N( f )+x,

with

N( f )=( f (t1), f (t2), ..., f (tn))

and x having the zero mean n dimensional normal distribution with covariance
matrix _2In ,

xt?n
_=N(0, _2In).

That is, the noise xi= yi& f (ti) coming from different observations is
independent and identically distributed, xi tiid N(0, _2). We assume that
_�0 allowing _=0 to cover also the exact information case. The quality
of approximation is given by its average Lp-error in the Lq-norm with
respect to wr, i.e.,

e p
q(r, _; ., N)=\|F r |R n

(& f&.(N( f )+x)&q) p ?n
_(dx) wr(df )+

1�p

.

Here 1�p<� and 1�q��. Letting Nn be the set of all N consisting of
at most n function evaluations, we are interested in the minimal error that
can be attained using N # Nn ,

e p
q(r, _; n)= inf

N # Nn

inf
.

e p
q(r, _; ., N).

The minimal errors e p
q(r, _; n) have been obtained in the case of exact

information where they are roughly equal to the average Kolmogorov
n-widths. See, e.g., Speckman [13] and Ritter [11] for q<�, and Mu� ller�
Gronbach and Ritter [5], Ritter [10], and Wasilkowski [15] for q=�.
Results on average n-widths can be found in Maiorov and Wasilkowski [4].

In the case of noisy information with p=q=2 the errors e2
2(r, _; n) have

been obtained by Plaskota [6] for r=0 and Ritter [12] for r�1. As noticed
in Ritter [12], similar formulas can be derived for all p, q except for q=�.
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We now state those results precisely. We use notation an �� bn to denote
the same asymptotic behavior of sequences, i.e., this means that there are
0<m�M<� such that m�an�bn�M holds for sufficiently large n,
n�n0=n0(_) . We stress that in all the asymptotic formulas for e p

q(r, _; n)
with _>0, the constants m and M are independent of _; however,
n0(_) � � if _ � 0 or if _ � �.

With this notation, for 1�q<� and _�0 we have

e p
q(r, _; n) �� n&(r+1�2)+\ _

- n+
(2r+1)�(2r+2)

, (1)

and for q=� and _=0 we have

e p
�(r, 0; n) �� n&(r+1�2) ln1�2 n.

The main purpose of this paper is to solve the missing case of the
average case L�-approximation with noise. Note that a similar problem,
but for the worst case error over f, has been studied by Donoho [2] and
Korostelev [3], who obtained the asymptotic constants for equidistant
sampling. Results for the multivariate L� -approximation in the same
setting are given in Plaskota [9]. In the average case setting, we have the
following theorem which is the main result of this paper.

Main Theorem. For _>0 we have

e p
�(r, _, n) �� \ _

- n+
(2r+1)�(2r+2)

ln1�2 n.

Thus, taking together the exact and noisy information cases, for _�0 we
obtain

e p
�(r, _; n) �� n&(r+1�2) ln1�2 n+\ _

- n+
(2r+1)�(2r+2)

ln1�2 n.

In particular, comparing this with (1), we have e p
�(r, _; n) �� e p

q(r, _; n) ln1�2 n,
i.e., the minimal error of L�-approximation is larger by a factor of ln1�2 n
than the minimal error of Lq-approximation with q<�, for both the exact
and noisy information.

A proof of the Main Theorem is given in Section 2 and Section 3. In
particular, we show that an order optimal L� -approximation can be
obtained by piecewise polynomial interpolation of degree r based on repetitive
observations at equidistant points. In Section 4 we additionally note that
the well-known smoothing spline approximation based on non-repetitive
and equidistant observations also leads to an order optimal approximation.
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The techniques used for proving the upper and lower bounds can be
applied to obtain the already known formulas for Lq-approximation with
1�q<�, as indicated in a series of remarks.

2. THE UPPER BOUND

We first need some facts from the case of exact information. Let Nn be
information about function values at equidistant points,

Nn( f )=( f (1�n), f (2�n), ..., f (1)).

For exact data (_=0) information Nn is order optimal. This is well known
for Lq-approximation with q<�. A proof for q=� and r=0 can be
found in Ritter [10]. In what follows, we show optimality of Nn for q=�
and r�1. In this case, Maiorov and Wasilkowski [4] give us a lower
bound n&(r+1�2) ln1�2 n for the minimal error; hence we only need to construct
an approximation using Nn with error of that order.

Assume without loss of generality that n is a multiple of r, i.e., s=n�r is
an integer. (Otherwise we take s=wn�rx.) For 1�i�s and 0� j�r, let

ti, j=(i&1)�s+ j�n.

Consider the approximation .n which uses information Nn and relies on
piecewise polynomial interpolation of degree r. That is, for t in an interval
[ti, 0 , ti, r], 1�i�s, we have

(.n( y1 , ..., yn))(t)=(wi, r( y(i&1) r , y(i&1) r+1 , ..., yir))(t)

(with y0=0), where wi, r(z0 , z1 , ..., zr) is the polynomial of degree r taking
zj at the points ti, j , 0� j�r.

Lemma 1. In the case of exact information and r�1 we have

e p
�(r, 0; .n , Nn)=O(n&(r+1�2) ln1�2 n),

i.e., the piecewise polynomial interpolation of degree r based on equidistant
points is order optimal.

Proof. Let f # Fr. Let f (z1 , z2 , ..., zk) denote the divided difference of f
of order k, i.e., f (z1) is the usual function value at z1 , and (for z1 {zk)

f (z1 , z2 , ..., zk)=
f (z2 , ..., zk)& f (z1 , ..., zk&1)

zk&z1

.
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Using the well-known formula for the error of Lagrange interpolation we
obtain that for any t # [ti, 0 , ti, r]

f (t)&(.n(Nn( f )))(t)

= f (t)&(wi, r( f (ti, 0), ..., f (ti, r)))(t)

=(t&ti, 0) } } } (t&ti, r) f (ti, 0 , ..., ti, r , t)

=(t&ti, 0) } } } (t&ti, r)
f (ti, 1 , ..., ti, r , t)& f (ti, 0 , ..., ti, r&1 , t)

ti, r&ti, 0

=(t&ti, 0) } } } (t&ti, r)
f (r)(!1(t))�r !& f (r)(!2(t))�r !

1�s
,

where !k(t) # [ti, 0 , ti, r], k=1, 2. Hence

| f (t)&(.n(Nn( f )))(t)|�
1

srr !
�i ( f )

with

�i ( f )=max[ | f (r)(!1)& f (r)(!2)|: ti, 0�!1 , !2�ti, r].

For 1�i�s, define the functions

gi (t)=- s \f (r) \wtsx+t
s +& f (r) \wtsx

s ++ , 0�t�1.

Then the gi 's are independent and identically distributed according to the
classical Wiener measure w0 on C([0, 1]). Moreover,

�i ( f )=s&1�2�� (gi)

with

�� (g)=sup[ | g(!1)& g(!2)|: 0�!1 , !2�1].

We obtain that the error of .n using Nn can be bounded from above by

e p
�(r, 0; .n , Nn)

=\|Fr
& f&.n(Nn( f ))& p

� wr(df )+
1�p

�(r !)&1 s&(r+1�2) \|F 0
} } } |

F 0
( max

1�i�s
�� (gi)) p w0(dg1) } } } w0(dgs)+

1�p

.
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Since Prob[�� (gi)>a]r(2?)&1�2 � |z|>a e&z2�2 dz as a � �, see Billingsley
[1], we have that the multiple integral above is asymptotically equal to the
expected value of max1�i�s |zi |

p with zi tiid N(0, 1), which in turn behaves
as lnp�2 s. Hence

e p
�(r, 0; .n , Nn)�(r !)&1 s&(r+1�2) ln1�2 s(1+o(1))

=
rr+1�2

r !
n&(r+1�2) ln1�2 n(1+o(1)) �� n&(r+1�2) ln1�2 n,

as claimed. K

Note that the approximation based on the piecewise polynomial interpo-
lation is defined for r�1. In the case of r=0 the corresponding approximation
would be

(.n( y))(t)= ywtnx�n , 0�t�1. (2)

Although .n( y) has discontinuities at j�n, \j, its error is well defined and

e p
�(0, 0; .n , Nn)=\|F 0

& f&.n(Nn( f ))& p
� w0(df )+

1�p

=n&1�2 \|F 0
} } } |

F 0
( max

1�i�n
�� (gi)) p w0(dg1) } } } w0(dgn)+

1�p

r�2 ln n
n

.

From Ritter [10] we know that the minimal error is in this case asymptoti-
cally equal to - ln n�(2n). (Actually the proof was given for p=1 but the
same holds for all p�1.) Hence .n is only twice worse than the optimal
approximation.

Remark 1. The same piecewise polynomial interpolation is order optimal
also for all q<�. Indeed, in view of Ho� lder's inequality it suffices to consider
p=q<�. Using the notation from the proof of Lemma 1 we obtain

eq
q(r, 0; .n , Nn)=\|F r |

1

0
| f (t)&(.n(Nn( f )))(t)|q dt wr(df )+

1�q

�\|
1

0
|

F r
| f (t)&(.n(Nn( f )))(t)|q wr(df ) dt+

1�q

�
1

r ! sr \ :
s

i=1
|

ti, r

ti, 0
|

F r
(�i ( f ))q qr(df ) dt+

1�q

=s&(r+1�2)(r !)&1 \|F 0
(�� i (g))q w0(dg)+

1�q

�� n&(r+1�2).
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Obviously, the same holds for r=0 and the piecewise constant approxima-
tion defined in (2).

We now use the approximation procedure .n to prove the upper bound
of the Main Theorem. We assume that _>0 and r�0. Let N k

m be informa-
tion where observations at equidistant points are repeated k times,

N k
m( f )=( f (1�n), ..., f (1�n)

k

, ..., f (1), ..., f (1)

k

).

For information

y=( y1, 1 , ..., y1, k , ..., ym, 1 , ..., ym, k) # Rn1,

where n1=mk, let y~ =( y~ 1 , ..., y~ m) # Rm be defined as

y~ i=
1
k

:
k

j=1

yi, j , 1�i�m.

Define the approximation .k
m as

.k
m( y)=.m( y~ ),

where .m is as in Lemma 1 if r�1, and .m is the linear spline interpolating
data or the piecewise constant approximation defined in (2) if r=0. Note
that, due to linearity of .m , we equivalently have .k

m( y)=(1�k) �k
j=1 .m( y j)

with y j=( y1, j , ..., ym, j).
In what follows, we write an(_)=O(bn(_)) iff there is a constant 0<M<�

such that an(_)�Mbn(_) holds for sufficiently large n, n�n0 . Here M is
independent of _, but n0 may depend on _.

Theorem 1. Let _>0. Let the number m of points and the number k of
repetitions be chosen such that mk=n1�n,

m �� \ _

- n+
&1�(r+1)

and k �� n \ _

- n+
1�(r+1)

.

Then for 1�p<� we have

e p
�(r, _; .k

m , N k
m)=O \\ _

- n+
(2r+1)�(2r+2)

ln1�2 n+ .
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Proof. Letting x~ = y~ &Nm( f )tN(0, _2�kIm) we have

e p
�(r, _; .k

m , N k
m)

=\|Fr |R n
& f&.k

m(N k
m( f )+x)& p

� ?n1
_ (dx) wr(df )+

1�p

=\|Fr |R m
& f&.m(Nm( f )+x~ )& p

� ?m
_�- k (dx~ ) wr(df )+

1�p

�\|Fr |R m
(& f&.m(Nm( f ))&�+&.m(x~ )&�) p ?m

_�- k (dx~ ) wr(df )+
1�p

.

Observe that for all m and x~ # Rm we have &.m(x~ )&��K&x~ &� , where

K= sup
&z&��1

&.r(z)&�<�.

This and the inequality ( |a|+|b| ) p�2 p&1( |a| p+|b| p) yield

e p
�(r, _; .k

m , N k
m)

�21&1�p \|Fr |Rm
& f&.m(Nm( f ))& p

�+&.m(x~ )& p
� ?m

_�- k (dx~ ) wr(df )+
1�p

�21&1�p \|Fr
& f&.m(Nm( f ))& p

� wr(df )+\K_

- k+
p

|
Rm

&z& p
� ?m

1 (dz)+
1�p

.

Finally, we use Lemma 1 and the formulas for m and k to obtain

e p
�(r, _; .k

m , N k
m)=O((m&p(r+1�2) lnp�2 m+(_�- k) p lnp�2 m)1�p)

�� \ _

- n+
(2r+1)�(2r+2)

ln1�2 n,

as claimed. K

In the special case of r=0, p=1, and .m being the linear spline, the
constant K=1 and the error

e1
�(O, _; .k

m , N k
m)�|

F 0
& f&.m(Nm( f ))&� w0(df )+

_

- k |
Rm

&z&� ?m
1 (dz)

�� � ln m
2m

+
_

- k
- 2 ln m
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(as m � �). The optimal m and k are mr- n�(2_) and kr2_ - n, and
then

e1
�(0, _; .k

m , N k
m)�\2_ ln n

- n +
1�2

(1+o(1)). (3)

Remark 2. We saw in the previous remark that for exact information
the approximation .n is order optimal not only for q=� but also for
1�q<�. Similarly, in the ``noisy'' case the approximation .k

m is order
optimal for all finite q. Indeed, assume without loss of generality that p=q.
Let

M=\|R r+1
&z&q

� ?r+1
1 (dz)+

1�q

<�.

Then

eq
q(r, _; .k

m , N k
m)�21&1�q \|Fr

& f&.m(Nm( f ))&q
q wr(df )+\KM_

- k +
q

+
1�q

�� \ _

- n+
(2r+1)�(2r+2)

.

In particular, for p=q=2, r=0, and .m the linear spline, we can calculate
the exact error; namely,

e2
2(0, _; .k

m , N k
m)

=\|F 0
& f&.m(Nm( f ))&2

2 w0(df )+
_2

k |
Rm |

1

0
|(.m(x~ ))(t)|2 dt ?m

1 (dx~ )+
1�2

=\ 1
6m

+
_2

k \|
1�m

0
|

R

(ztm)2 ?1
1(dz) dt

+(m&1) |
1�m

0
|

R 2
(z2 tm&z1(1&tm))2 ?2

1(dz) dt++
1�2

=\ 1
6m

+
2_2

3k \1&
1

2m++
1�2

.

The optimal choice of m is mr- n�(2_). Then the number k of repetitions
is roughly 2_ - n and the error is asymptotically equal to

e2
2(0, _; .k

m , N k
m)r\ 2_

3 - n+
1�2

.
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This can be compared with the minimal error that can be obtained from
non-repetitive n equidistant observations. In the latter case, this error asymptoti-
cally equals (_�(2 - n))1�2, see Plaskota [6]; hence we lose about 15.60
using repetitions.

3. THE LOWER BOUND

We first show the following simple, but useful lemma.

Lemma 2. Let + be a Gaussian measure on C([0, 1]) with covariance
kernel R. Let R� be the covariance kernel of the conditional (a posteriori)
distribution of + with respect to independent noisy observations of f (t1), ...,
f (tn) with variance _2. Then

R� (t, t)�
_2R(t, t)

_2+nRmax

, 0�t�1,

where Rmax=sup0�u�1 R(u, u).

Proof. Suppose that a single observation at u is performed with variance

_2
u=_2R(u, u)�Rmax

instead of _2. (Or equivalently that only observations of the functionals
af (t), where a2�Rmax�R(u, u), with variance _2 are allowed.) Let R� 1 be the
corresponding conditional covariance kernel. The problem of maximally
reducing R� 1(t, t) is equivalent to approximating f (t) in the L2 -norm. It
follows from Plaskota [7] (see also Plaskota [8, Sect. 3.8.1]) that the best
way of doing this is to make all the n observations at t, and then

R� 1(t, t)=
_2

t R(t, t)
_2

t +nR(t, t)
=

_2R(t, t)
_2+nRmax

.

The proof is complete with the observation that _2
t �_2 implies R� (t, t)�R� 1(t, t).

K

Using this lemma we now prove the lower bound of Main Theorem. We
write an(_)=0(bn(_)) iff there is 0<m<� independent of _ such that
an(_)�mbn(_) for all sufficiently large n, n�n0=n0(_). K

Theorem 2. For _>0 we have

e p
�(r, _; n)=0 \\ _

- n+
(2r+1)�(2r+2)

ln1�2 n+ .
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Proof. Let m�1. Let w~ r be the conditional distribution on F r given
additional exact information that f ( j)(i�m)=0 for 1�i�m and 0� j�r.
That is, w~ r is the well-known r-fold Brownian bridge. Its mean element is
zero and its covariance kernel R(s, t) is given as follows. Let #r=((2r+1)
(r !)2)&1. Then for (i&1)�m<s�t<i�m we have

R(s, t)=R(t, s)=#rm&(2r+1)(s~ (1+t~ ))2r+1,

where s~ =sm&(i&1) and t~ =tm&(i&1). On the other hand, if s and t are
not in the same interval ((i&1)�m, i�m) then the variables f (s) and f (t) are
independent and R(s, t)=0.

Now, let ui=(2i&1)�(2i), 1�i�m, and

& f &
*

= max
1�i�m

| f (ui)|�& f &� .

It is clear that the minimal error for our original problem is bounded from
below by the minimal error for a new problem with wr replaced by w~ r and
with error measured in the seminorm & }&

*
instead of & }&� . That is, we

now find

e~ p

*
(r, _; n)= inf

., N \|F r |Rn
max

1�i�m
| f (ui)&.i (N( f )+x)| p ?n

_(dx) w~ r(df )+
1�p

,

where N( f )=( f (t1), ..., f (tn)) and .i ( y)=(.( y))(ui). To that end, observe
that the random variables zi= f (ui) are independent (with respect to w~ r)
and zi tiid N(0, *) with

*=R(ui , ui)= sup
0�u�1

R(u, u)=#r(4m)&(2r+1).

Also, for t # ((i&1)�m, i�m) and j{i the variables f (t) and zj are independent.
Thus a single observation at such a t can only reduce the variance of zi and,
in view of Lemma 2, the best way of doing this is to take t=ui . Consequently
we can restrict observations to those at the ui 's and

e~ p

*
(r, _; n)= inf

., N \|R m |R n
max

1�i�m
|zi&.i (N(z)+x)| p ?n

_(dx) ?m
* (dz)+

1�p

,

where z=(z1 , ..., zm), .=(.1 , ..., .m), and information is of the form

N(z)=(zi1
, ..., zin

), 1�ij�m.

We obtained that the difficulty of the original problem is bounded from
below by the difficulty of approximating a finite dimensional vector zt

N(0, *Im) from n noisy observations of its coordinates. The solution of the
latter problem for p=1 is given in Plaskota [9, see Lemma A2 of Appendix];
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however, applying the same technique one can solve it for arbitrary p�1. We
have that the minimal error for the finite dimensional problem (and for n
a multiple of m) is

_ � m*
_2m+*n \|R m

&z& p
� ?m

1 (dz)+
1�p

.

Hence, taking into account the formula for * and letting m �� (n�_2)1�(2r+2),
we finally obtain

e p
�(r, _; n)�e p

*
(r, _; n)r_ � #rm

_2m2r+2+#rn \|Rm
&m& p

� ?m
1 (dz)+

1�p

r_ � 2#rm ln m
_2m2r+2+#r n

�� \ _

- n+
(2r+1)�(2r+2)

ln1�2 n,

as claimed. K

Observe that in the case of r=0 and p=1 we have *=1�(4m). Hence,
taking mr- n�(2_), we obtain

e1
�(0, _; n)�_ � 2m ln m

4_2m2+n
(1+o(1))r\_ ln n

4 - n+
1�2

.

Comparing this with (3) we can write

e1
�(0, _; n)ran \_ ln n

- n +
1�2

where 1�2�an�- 2.

Remark 3. The proof of Theorem 2 can also be easily adopted to obtain
lower bounds on the minimal errors for 1�q<�. Indeed, let without loss of
generality p=q. Let R� r be the conditional covariance kernel after n noisy
observations N( f )=( f(t1), ..., f (tn)), and let *t=R� r(t, t). Let E'(�(x))
denote the expected value of �(x) with respect to xtN(0, '). Proceeding as
in, e.g., Ritter [10], we can write that the minimal error for the information
N equals

inf
.

eq
q(r, _; ., N)=\|

1

0
E*t

( |x|q) dt+
1�q

=(E1( |x| q))1�q \|
1

0
*q�2

t dt+
1�q

.

Using Lemma 2 and notation from the proof of Theorem 2 we find that

*t�
_2#r

_2m2r+1+4&(2r+1)ki#r
(t~ (1&t~ ))2r+1,
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where m�1 and ki is the number of points ti in the interval ((i&1)�m, i�m).
Hence

inf
.

eq
q(r, _; ., N)�(E1( |x|q))1�q \ :

m

i=1
\ _2#r

_2m2r+1+4(&(2r+1))ki#r+
q�2

_|
1

0
(t~ (1&t~ ))q(r+1�2) dt+

1�q

=\E1( |x|q) |
1

0
u((1&u))q(r+1�2) du+

1�q

_\ 1
m

:
m

i=1 \
_2#r

_2m2r+1+4&(2r+1)ki #r+
q�2

+
1�q

.

The last expression is minimized by ki=n�m, \i. Thus taking m �� (n�_2)1�(2r+2)

we finally obtain

inf
.

eq
q(r, _; ., N)=0 \\ 1

m
:
m

i=1
\ _2#r

_2m2r+2+4&(2r+1)(n�m) #r+
q�2

+
1�q

+
�� \ _2m

_2m2r+2+n+
1�2

�� \ _

- n+
(2r+1)�(2r+2)

,

as claimed. See also Plaskota [6] for a similar proof in the special case of
r=0 and p=q=2.

4. NON-REPETITIVE OBSERVATIONS AND
SMOOTHING SPLINES

In Section 2 we constructed an order optimal approximation based on
repetitive observations. In practice one often uses non-repetitive observations
at equidistant points, i.e., Nn( f )=( f (1�n), f (2�n), ..., f (1)). It can be easily
seen that if _>0 then the usual piecewise polynomial approximation does not
do the job in this case and we are forced to make some smoothing. That is,
as an approximation to f one uses the smoothing spline .( y)=.spl( y) which
is given as the minimizer of

_2 } |
1

0
( f (r+1)(u))2 du+ :

n

j=1

( yj& f ( j�n))2

over f # W r+1
2 (0, 1), f (i)(0)=0, 0�i�r. It is known that the smoothing

spline approximation is best possible in the sense that it minimizes the
error e p

q(r, _; ., Nn) over all . using Nn , see, e.g., Plaskota [8, Sect. 3.6].
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It is also known that information Nn together with .spl provides an order
optimal approximation for q<�, see Ritter [11, 12]. A natural question
is whether this is also the case for q=�.

Theorem 3. For _>0 we have

e p
�(r, _; .spl , Nn)=O\\ _

- n+
(2r+1)�(2r+2)

ln1�2 n+ ,

i.e., the smoothing splice approximation .spl based on the equidistant and
non-repetitive observations Nn is order optimal for uniform approximation.

Proof. We only sketch the proof since it makes use of the ideas already
applied for proving the upper bound of Section 2.

Since the approximation .spl is best possible when using Nn , it suffices
to show the order optimality of another approximation that uses Nn . This
approximation is defined as follows.

Let m and k be chosen as in Theorem 1. We can assume without loss of
generality that mk=n and m is a multiple of r. Then Nn=(Nn, 0 , Nn, 1 , ...,
Nn, k&1) with

Nn, j=( f (1�m& j�n), f (2�m& j�n), ..., f (1& j�n)), 0� j�k&1.

Let .n, j be an approximation that uses information Nn, j and is order optimal
for exact information; e.g., one can take (with some obvious modifications) the
piecewise polynomial approximation of Lemma 1. Then we let

.~ n( y)=
1
k

:
k&1

j=0

.n, j ( y j),

where y=( y0, ..., yk&1) # Rn and y j # Rm, \j. Note that .~ n can be viewed as
another smoothing procedure that uses the non-repetitive and equidistant
observations.

Repeating the corresponding part of the proof of Theorem 1, we find
that

e p
�(r, _; .~ n , Nn)

�21&1�p \|Fr "1
k

:
k&1

j=0

( f &.n, j (Nn, j ( f )))"
p

�
wr(df )

+_ p |
Rm

} } } |
R m "1

k
:

k&1

j=0

.n, j(x j )"
p

�
?m

1 (dx0) } } } ?m
1 (dxk&1)+

1�p

.

Since all the .n, j 's are order optimal for m observations, the first integral
above behaves as m&p(r+1�2) lnp�2 m. The second (multiple) integral in turn
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behaves as k&p�2 lnp�2 m, due to independency of .n, j (x j) for 0� j�k&1.
Hence, using the formulas for m and k we obtain

e p
�(r, _; .~ n , Nn)=O \\ _

- n+
(2r+1)�(2r+2)

ln1�2 n+ ,

as claimed. K

Obviously, a similar idea can be used to prove the order optimality of
Nn in the case of q<�.

Note. Lemma 1 is a result of e-mail conversations with Klaus Ritter.
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